Drive, Urge Or Motivation in Animals

Drive, Urge Or Motivation in Animals


The term Drive was introduced by Woodworth (1918) as motivational concept. Animals experienced drive as biological needs such as eating and drinking and alteration in their behaviour. Drive theories were later given by Sigmund Freud (1915) and Clark Hull (1943). Freud, who was physiologist by training, believed that drives and urges such as hunger were recurring conditions in the body of animal that produced energy build up in the nervous system.

This energy build up caused psychological discomfort and restlessness that kept on increasing unless the urge was satisfied. Drive arose from a range of bodily disturbances, such as deprivation of food, water, air, sleep or temperature regulation, injury or activities like nest building. Freudian drive theory was based on the following three principles:

  • Drive emerged from bodily needs of the animal.
  • Drive energized the behaviour of animal due to restlessness.
  • Reduction of drive by satisfying needs produced learning.

Konrad Lorenz (1950) proposed the Psycho-hydraulic model or Flush toilet model to explain the drive and consummatory behaviour, which has three steps:

  1. Drive causes action specific energy to accumulate with time and causes increased restlessness in the animal, which results in searching behaviour for food, water, mate etc.
  2. Consummatory behaviour starts after achieving the goal such as food or any other sign stimuli. The innate release mechanism releases the accumulated energy in the animal.
  3. After consummatory behaviour there is a quiescent period in the animal as the accumulated energy has been released and the action stoped. This is called refractory behaviour of the animal.

HUNGER & THIRST DRIVE

Hunger drive is controlled by lateral hypothalamus and ventro-median nucleus, the former is stimulatory in function while the latter is inhibitory. Glucocorticoids inhibit the hunger drive. Lateral hypothalamus can be stimulated by epinephrine. The hunger and thirst drives depend on hours of deprivation of feeding on dry food.

HOARDING DRIVE

Many mammals such as male gerbil and squirrels possess hoarding drive as the lean season approaches. Low estrogens and testosterone levels stimulate hoarding drive in mammals. Castrated individuals show increased hoarding drive, which can be reduced by giving testosterone treatment.

MIGRATORY DRIVE

Migratory drive occurs in fishes and birds and may be seasonal or related to reproduction. Pineal glands, which is affected by day-light hours, affects migration in birds. In warblers pituitary gland influences migratory urge as well as excessive eating to deposit fat energy in the body. In stickleback fish thyroxin injection caused them to migrate. In Salmon and Anguilla, maturation of gonads produces migratory drive, so much so that they stop eating and set out to the course of migration crossing all obstacles on the way.

AGGRESSION DRIVE

Aggression is controlled by amygdala of the limbic system of brain and posterior hypothalamus is also involved to some extent. In most of the male mammals testosterone causes aggression while in females high oestrogen levels reduce aggression and make the female peaceful. Hydrocortisone also increases aggression while hydroxydione decreases it. In ringed dove implants of testosterone propionate at specific sites of hypothalamus causes aggressiveness.

TERRITORIAL DRIVE

Many vertebrates mark and defend their territory. Dogs, hyenas and some prosimians mark their territory by their own urine. Monotremes and marsupials have anal glands which they rub on the ground to mark territory. In tigers and cheetahs also there are anal glands which spray the secretion on the trees to mark their territory. Gazelles possess orbital glands below the eyes which secrete a tar-like substance that they apply on grasses and bushes. Territorial behaviour is also hormone dependent. Yahr & Thiessen (1972) isolated 11 different hormones that influence territorial behaviour in vertebrates.

HORMONES IN SEXUAL DRIVE

Sexual drive involves courtship behaviour such as singing and dancing in birds, croaking in frogs and fighting in males of many vertebrates. In insects courtship behaviour is stopped if corpora allata are removed.

Hormonal levels increase in breeding season. Castrated males and females do not show sexual behaviour in vertebrates while testosterone injections elicit sexual behaviour. According to Johnson (1976) oestrogen enhances female attractiveness and receptivity and causes oestrous in females.

Hypothalamic Releasing Factor (LH-RF) and ACTH are known to affect copulatory behaviour in many animals.

PARENTAL CARE DRIVE

Gonadotropin secretion by pituitary gland cause not only courtship display but also parental care in birds. Progesteron injections made the birds sit on the eggs to incubate within 20 minutes.

In pigeons, secretion of prolactin from pituitary causes enlargement of crop to produce pigeon-milk which is fed to the chicks. Prolactin also acts directly on brain and makes the preoptic nucleus of hypothalamus in birds to respond to chicks calls.




1 Comment so far

parashmita chakrabortyPosted on  3:01 pm - May 4, 2017

sir ur notes are very good and is easy to learn .
thanking u
a student of zoology

Comments are closed.

Comments Are Closed!!!